\qquad

Section - A

ANSWER ALL THE QUESTIONS:
(10x2=20 Marks)

1) Find the directional derivation of $\emptyset=x+x y^{2}+y z^{3}$ at $(0,1,1)$ in the direction of the vector $2 \vec{\imath}+2 \vec{\jmath}-\vec{k}$
2) Find the equation of the tangent plane to the surface $x^{2}+2 y^{2}+3 z^{2}=6 \quad$ at the point $(1,-1,1)$.
3) If $F=3 x y \vec{\imath}-y^{2} \vec{J}$ and C is the curve $\mathrm{x}=\mathrm{t}, \mathrm{y}=2 \mathrm{t}^{2}$ from $(0,0)$ to $(1,2)$ find $\int_{c} F . d r$
4) What is the necessary and sufficient condition for line integral to be independent of path of integration.
5) State stokes theorem.
6) Show that for a closed surface S enclosing a region of volume V.

$$
\iint_{s}(a x \vec{\imath}+b y \vec{\jmath}+c z \vec{k}) \cdot d s=(a+b+c) v
$$

7) Solve $\mathrm{p}^{2}-5 \mathrm{p}+6=0$.
8) Solve $y=(x-a) p-p^{2}$
9) Find the particular integral of $\left(D^{2}-3 D+2\right) y=\sin 3 x$.
10) Solve $\left(D^{2}-5 D+6\right) y=0$.

Section - B

ANSWER ANY FIVE QUESTIONS:
(5x8=40 Marks)
11) If $\nabla \emptyset=\left(y+y^{2}+z^{2}\right) \vec{\imath}+(x+z+2 x y) \vec{\jmath}+(y+2 z x) \vec{k}$ and if $\emptyset(1,1,1)=3$. Find \emptyset.
12) Show that $\nabla^{2} r^{n}=n(n+1) r^{n-2}$
13) Find the value of the integral $\int_{c} A . d r$ where $A=y z \vec{\imath}+z x \vec{\jmath}-x y \vec{k}$ if
a) C is the curve defined by $x=t, y=t^{2}, z=t^{3}$ drawn from $O(0,0,0)$ to $Q(2,4,8)$
b) C is the straight line joining $(0,0,0)$ to $(2,4,8)$.
14) Evaluate $\iint A$.n d.s if $A=4 y \vec{\imath}+18 z \vec{\jmath}-x \vec{k}$ and S is the surface of the portion of the plane $3 \mathrm{x}+2 \mathrm{y}+6 \mathrm{z}=6$ contained in the first octant.
15) Verify Green's theorem in the plane for the $\int_{c} x^{2} y d x+y d y$ where C is the curve enclosing the region R bounded by the line $\mathrm{y}=\mathrm{x}$ and the parabola $\mathrm{y}^{2}=\mathrm{x}$.
16) Solve $\frac{d y}{d x}-y \tan x=\frac{\sin x \cos ^{2} x}{y^{2}}$.
17) Solve $\left(D^{2}+16\right) y=2 e^{-3 x}$.
18) Solve by variation of parameters $\frac{d^{2} y}{d x^{2}}+y=\sec x$

Section - C

ANSWER ANY TWO QUESTIONS:

19) a) Show that $\nabla^{2} f(r)=f^{\prime \prime}(r)+\frac{2}{r} f^{\prime}(r)$.

Also show that if $\nabla^{2} f(r)=0$ then $f(r)=\frac{\alpha}{r}+\beta$ where α and β are arbitrary constants.
b) Find the value of a if
$A=\left(a x y-z^{2}\right) \vec{\imath}+\left(x^{2}+2 y z\right) \vec{\jmath}+\left(y^{2}-a x z\right) \vec{k}$ is irrotational.
20) Verify the divergence theorem for $A=(x+y) \vec{\imath}+x \vec{\jmath}+z \vec{k}$ taken over the region V of the cube bounded by the planes $\mathrm{x}=0, \mathrm{x}=1, \mathrm{y}=0, \mathrm{y}=1, \mathrm{z}=0, \mathrm{z}=1$.
21) a) Solve $x p^{2}-2 y p+x=0$.
b) Solve $p^{2}+2 y p \cot x=y^{2}$.
22) a) Solve $x^{2} \frac{d^{2} y}{d x^{2}}+x \frac{d y}{d x}+y=\log x$
b) Solve $\left[D^{2}+4 D+5\right] y=e^{x}+x^{3}+\operatorname{Cos} 2 x$.

