1

LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600 034

B.Sc.DEGREE EXAMINATION – **MATHEMATICS**

THIRD SEMESTER - NOVEMBER 2018

MT 3503– VECTOR ANALYSIS & ORDINARY DIFF. EQUATIONS

Date: 31-10-2018 Time: 01:00-04:00

Max.: 100 Marks

Section – A

ANSWER ALL THE QUESTIONS:

- 1) Find the directional derivation of $\phi = x + xy^2 + yz^3$ at (0, 1, 1) in the direction of the vector $2\vec{i} + 2\vec{j} \vec{k}$
- 2) Find the equation of the tangent plane to the surface $x^2 + 2y^2 + 3z^2 = 6$ at the point (1, -1, 1).
- 3) If $F = 3xy\vec{i} y^2\vec{j}$ and C is the curve x =t, y = 2t² from (0, 0) to (1, 2) find $\int_{C} F dr$
- 4) What is the necessary and sufficient condition for line integral to be independent of path of integration.
- 5) State stokes theorem.
- 6) Show that for a closed surface S enclosing a region of volume V.

$$\iint_{S} (ax\vec{\imath} + by\vec{\jmath} + cz\vec{k}) \cdot ds = (a+b+c)v$$

- 7) Solve $p^2 5p + 6 = 0$.
- 8) Solve $y = (x-a) p p^2$
- 9) Find the particular integral of $(D^2 3D + 2) y = sin3x$.

10) Solve $(D^2 - 5D+6) y = 0$.

Section – B

ANSWER ANY FIVE QUESTIONS:

(5x8=40 Marks)

11) If $\nabla \phi = (y + y^2 + z^2)\vec{i} + (x + z + 2xy)\vec{j} + (y + 2zx)\vec{k}$ and if $\phi(1, 1, 1) = 3$. Find ϕ .

12) Show that $\nabla^2 r^n = n (n+1)r^{n-2}$

13) Find the value of the integral $\int_{C} A dr$ where $A = yz\vec{i} + zx\vec{j} - xy\vec{k}$ if

a) C is the curve defined by x = t, $y = t^2$, $z = t^3$ drawn from O (0, 0, 0) to Q (2, 4, 8)

b) C is the straight line joining (0, 0, 0) to (2, 4, 8).

Dept. No.

(10x2=20 Marks)

14) Evaluate $\iint A.n d.s$ if $A = 4y\vec{i} + 18z\vec{j} - x\vec{k}$ and S is the surface of the portion of the plane 3x + 2y + 6z = 6 contained in the first octant.

15) Verify Green's theorem in the plane for the $\int_c x^2 y \, dx + y \, dy$ where C is the curve enclosing the region R bounded by the line y =x and the parabola $y^2 = x$.

16) Solve $\frac{dy}{dx} - ytanx = \frac{sinx \cos^2 x}{y^2}$. 17) Solve $(D^2 + 16)y = 2e^{-3x}$. 18) Solve by variation of parameters $\frac{d^2y}{dx^2} + y = \sec x$

Section – C

ANSWER ANY TWO QUESTIONS:

(2x20= 40 Marks)

19) a) Show that $\nabla^2 f(r) = f''(r) + \frac{2}{r} f'(r)$.

Also show that if $\nabla^2 f(r) = 0$ then $f(r) = \frac{\alpha}{r} + \beta$ where α and β are arbitrary constants.

b) Find the value of a if

 $A = (axy - z^2)\vec{\iota} + (x^2 + 2yz)\vec{\jmath} + (y^2 - axz)\vec{k}$ is irrotational.

20) Verify the divergence theorem for $A = (x + y)\vec{i} + x\vec{j} + z\vec{k}$ taken over the region V of the cube bounded by

the planes x=0, x=1, y=0, y=1, z=0, z=1.

21) a) Solve xp² – 2yp + x =0.

b) Solve $p^2 + 2yp \cot x = y^2$.

22) a) Solve $x^2 \frac{d^2 y}{dx^2} + x \frac{dy}{dx} + y = \log x$

b) Solve $[D^2 + 4D + 5] y = e^x + x^3 + \cos 2x$.
